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1. INTRODUCTION

The great technological progress embodied in very large scale

integration (VLSI) of electronic circuits has made it possible to

conceive large systems of processing elements cooperating in the execu-

Ition of parallel algorithms. This has motivated considerable research

interest in parallel computation. Unfortunately, here the situation is

very different from that of serial computation, where the RAM machine

[1] represents a universally accepted model. The difficulty of choosing

a specific interconnection is frequently bypassed by assuming a model

I (shared-memory-machine) where each pair of processors is connected (or

an equivalent system) [2-5]. Although not without merit, because it aims

at uncovering the inherent data-dependence of given problems, this

approach ignores the technological constraints of VLSI, particularly as

regards the comminication among the processing elements [61. At the

I opposite end, other workers [7-111 suggest that processor interconnection

should be limited to planar links between topologically neighboring cells

(arrays or meshes). Such designs are certainly well suited for current

VLSI technology, and they hcve cleverly been used in implementing algorithms for

matrices or graph problems [9-12], for example. This type of connection,

however, is not suited for efficiently implementing algorithms for

1various fundamental problems, such as sorting and convolution. Indeed,

good algorithms for solving these problems intrinsically require data

movement between processors which are topologically far apart; for

example, sorting on an n processor array such as ILLIAC IV requires
ltime 0 n- [8].

I
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I The purpose of the paper is to propose and analyze a new interconnec-

tion of processors, called the cube-connected-cycles, which is remarkably

suited for implementing efficient algorithms such as Fast-Fourier-Trans-

j form (FFT), sorting, etc... . The geometric structure underlying the

interconnections is that the k-dimensional cube. This structure which

has already been studied in relation to parallel computation [13], is

I not readily usable for VLSI design, since each of the 2k processors is

connected to k other processors.

By combining parallelism and pipelining we are able to achieve the

following results:

I (1) The number of connections per processor is reduced to 3.

I (2) Processing time is not significantly increased with respect

to that achievable on the k-cube structure.

(3) Programs for the individual modules are obtained in a systematic

way from a standard description of the global algorithms.

1(4) The overall structure complies with the basic requirements of

I VLSI technology: modularity, ease of layout, simplicity of communication

among the processing elements, simplicity in timing and control of the

Jentire system (14]. We also propose a wire layout of the CCC, which can

be physically realized with two orthogonal layers of wires, This layout

Iis optimal for several problems, according to a recently proposed VSLI

I model [18].

(5) Finally we are able, without resorting to any drastic departure

from classical algol-like languages, to provide fully accurate and

hopefully easily understandable descriptions of our parallel programs.

This is a favorable sign that parallel processing may possibly be endowed

I with suitable high level programing languages.

• -- - a / -WI
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j This paper is organized as follows. Section 2 introduces a class

of algorithms comprising many important applications, such as merging,

I sorting, Fourier Transform, data rearrangement,......Section 3

presents models of module connections, including the CCC, allowing for

efficient parallel execution of the algorithms in Section 2. Section 4

describes the implementation of such algorithms on the CCC, and Section 5

is devoted to optimality considerations regarding a layout of the machine

I for VLSI realizations.
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2. A CLASS C HIGHLY PARALLEL ALGORITHMS

To describe our algorithms, assume that input data t0,tl,...,tn. I

are stored respectively in storage locations T[0],T[l],...,T[n-l], and

k
that n = 2 , i.e., the number of inputs is a power of 2. We say that an

algorithm is in the DESCEND class if it performs a sequence of basic

operations on data which are successively 2k- 2 j
, .. .,2 0 = I loca-

tions apart. Each basic operation OPER(m,j;U,V) modifies the two data

items present in storage locations U and V; the computation performed

affects only the contents of U,V and it may depend upon parameters m and

j, which are integers 0 ! m < n, 0 5 j < k.

Algorithms in the DESCEND class are then specified as:

proc DESCEND

for j .- k-l step -1 until j = 0

do foreach m: 0 : m < n

pardo if bit.(m) = 0 then OPER(m,j;T[m],Tfm+2j])

fi

odpar

od

corp DESCEND

Here, bit (m) is the coefficient of 2j in the binary representation of

m - - bitj(m)2i. The language construct foreach m: <cond(m)> pardo
Jao

<action> odpar obviously indicates that all instructions <action> cor-

responding to values of m satisfying <cond(m)> can be performed simultaneously.

On machines where such parallelism can be realized, DESCEND algorithms run

j in k - g2 (n) elementary steps.

We also introduce the dual class ASCEND, where the control of the

[algorithm is changed to
f

. . .. j tp1utlj-k1
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i.e., OPER is performed on data which are successively

0 1k-i
1 = 2 ,21,...,2 j ,...,2 locations apart. To clarify the duality between

ASCEND and DESCEND consider the binary representation of m = Z bit. (m).2 i

Cti<k

k-i -1
and define = E bit.(m) .2k  , the integer whose binary represen-

c<i<k L

tation is the reversal of that of m. Once k is fixed, the function:

m- I is an involutory permutation of O,l,...,2 k- known as the bit

reversal permutation (BRP). For example, for k = 3, the BRP of

(0 1 2 3 4 5 6 7) is (0 4 2 6 1 5 3 7).

By first applying the BRP to its inputs, an ASCEND algorithm can be

transformed into a dual DESCEND algorithm (figure 1) whose basic operation

OPER is related to the original OPER by:

OPER(m,j;U,V) = OPER m,k-l-j;U,V)

0 1 2 3 4 5 6 7 input 0 4 2 6 1 5 3 7

j -2 j 0
O PER

0' l' 2' 3' 4' 5' 6' 7' 0' 4' 2' 6' 1' 5' 3' 7'

j=l j=l1
OPERil 1" 2'' 31" 41" 511 61' 711 Oi" 411 2" 6" 1'' 511 31' 7"

j =0 j =2
OPER

01"1 " 2" '31"'4"1'5" '6" '7"11 01' 14" '12" ' 6"' 1" 1 5" '31" '71"

DESCEND ASCEND

Figure 1. Dual algorithms; operands are denoted by their original
addresses, connecting lines show interacting operands,

and priming indicates the number of operations through
which an operand has been processed.

It is now time to exhibit algorithms for solving specific interesting

problems. Some applications - such as bitonic merge and cyclic shift -

are directly within the ASCEND or DESCEND classes (simple algorithms);

for these applications, all we have to do is specify OPER(m,j;U,V).• [
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Other applications (such as permutation, shuffle, unshuffle, bit-

reversal (BRP), odd-even-merge, Fast-Fourier-Transform, convolution,

matrix transposition) have programs consisting of a short sequence

of algorithms (cascaded algorithms) in the preceding class, and thus

run in O(logn) parallel steps.

We also have applications - such as bitonic sort, odd-even-sort,

and calculations of symmetric functions - for which the combining step

of the two results of a recursive call is itself an algorithm in one

of the two preceding categories. These algorithms, which we call

composite, run in O((logn) 2 ) parallel steps.

2.1 Bitonic Merge

The elegant algorithm for bitonic merge, due to K. E. Batcher

[15], is ideally suited for implementation within the DESCEND class.

All we need is to specify OPER(m,j;U,V) as a comparison-exchange.

Precisely, in order to handle sequences which are sorted either in

increasing or in decreasing order, we define ORIENTCOMPEXCHANGE(m,j;U,V)

as

if bit.(m) = 0 then (U,V)-(min (U,V), max (U,V))

else (U,V)'-(max (U,V), min (U,V))

fi

Batcher's odd-even merge [15,161 can also be programmed as a cascaded

algorithm, running in O(logn) parallel steps.

2.2 Radix-2 Fast-Fourier-Transforms and Convolution

The important FFT algorithm can be set in the ASCEND class. Let
2k

w be a primitive root of unity of order n = . If <A0, ... ,An-l >

is the Fourier Transform of vector <a0,... a 1>, it is well-known

that A U U + Wj and Ak l Uj - wivj where the U's and V's

t +2 k - I
-
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2
are respectively the Fourier Transforms, with primitive root i , of

the "even" subsequence <ao,a2,...,a k > and the "odd" subsequence2k-2

<al,a3,.. .,a 2k_ >; we call the wJ's the combining root powers.

The above relationships indicate that the sequence <a 0,... ,an-l>

must be initially rearranged by means of the bit-reversal permutation.

Once the desired reconfiguration has been achieved, we may proceed with

the actual FFT computation, which is in the ASCEND class.

Its basic operation OPER(m,j;U,V) is specified by

(U,V) - (U+V,U-uV) where 
a = w

It is not hard to show that a can be computed efficiently at each step;

precisely, the time used by each module to compute, by successive squaring,

the required combining root powers for the entire algorithm is

0((loglogn) 2 o(logn). Using a sequence of two inverse Fourier transforms

in the classical manner [1] allows one to compute the convolution of to

sequences, from which a wealth of applications can be derived (see [11).

2.3 Data Rearrangements

Being able to efficiently permute the data is obviously important

for may applications. For example, the BRP rearrangement is a necessary

preliminary step to the FFT algorithm of the preceding section. Some

permutations, such as cyclic shifts, shuffle, and unshuffle can be

computed by algorithms in ASCEND or DESCEND, as the reader will

enjoy discovering for himself (here "shuffle" of (0,1,2,...,2 k-1) is

k-l k-l k-i k
(0,2 ,l,2 +1,...,2 -1,2 -1) and "unshuffle" is the inverse

permutation). Other permutations, such as BRP or matrix transpose, are

computed by cascaded algorithms. In general, we can emulate a Benes

permutation network (211 by a sequence ASCEND;DESCEND, thus in time

O(logn); it must be pointed out, however, that to realize an arbitrary

(permutation, the exchange information must be precomputed.

4t mm
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2.4 Sorting and Calculation of Symmetric Functions

The previously described merge routines can be used as the basis of

efficient sorting algorithms. A sequence of input keys is divided into

two halves, each of which is recursively sorted (in opposite order in

the case of bitonic sort), and then merged using either of the above

merge routines. Both algorithms run in time O((iogn) 2).

One can compute symmetric functions in a completely analogous

fashion: apply recursive calls to each half of the data, and compute the

convolution of the two resulting sequences, again in time O((logn)-).

2.5 Matrix Multiplications and Other Algorithms

To compute the matrix product C = A x B of two n X n matrices, we

must obviously first store A = (A T.. .AT)T in row major order, and

B = (B0. . .B 1 ) in column major order. Assuming we have enough space

and processors, i.e., 2k > n 3 , we copy A and B into the pattern:

A0B0A0B1'A0Bn-IA1B 0 j ... 'An-lABn-l . All this can be achieved

with simple-minded cascaded algorithms, in time O(logn).

Each of the scalar products ci, j  Ai.B j = Z a b . is computed in
j i,k k,j

parallel, within O(logn) additional time units. The results c. . are

then regrouped, according to the output format (say, row major).

Although the details of this algorithm are a bit tedious to describe,

it should be clear that matrix multiplication can be computed in time

O(logn), within our class of algorithms. In fact, a surprising number

of other algorithms can be efficiently implemented within this framework,

including all of the interesting algorithms for parallel processing known

to the authors.I
ci
U
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3. DESCRIPTION OF THE SCHEME

In order to efficiently implement algorithms in the DESCEND class,

the most natural interconnection of modules is that of the k-dimensional

binary cube (k-cube) where each of the 2k processors is numbered from

0 to 2 k- and is connected to each of the k processors whose binary

numbering differs in exactly one binary position (figure 2). Although

an ASCEND or DESCEND algorithm can be implemented on such a machine in

log 2n parallel steps, this proposal is not feasible mainly because the

number k = log 2n of connections for each processor is too large. The

unfolded k-cube and the perfect shuffle interconnections have been proposed

[171 (figure 3), as attempts to remedy this difficulty.

0

1 2 4

3 5 6

7

Figure 2. The 3-cube.
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Figure 3. Unfolded 3-cube (left) and perfect shuffle (right) interconnections.

Although both structures have a fixed number (4) of connections per

processor, their intrinsic topology make them inferior, as regards physical

layout (see section 5), to the scheme we now describe.

Out parallel computing system, the cube-connected-cycles (CCC), is

a network of identical processors, called modules. A module has 3 inter-

connection ports. Each interconnection line linking two modules can be

used for the bidirectional transmission of one operand, and it is

irrelevant here whether operand transmission is serial or parallel. For

correctly executing the algorithms described in the preceding sections,

it is indifferent to synchronize the entire system through a central clock,( which defines time units for all modules, or to let synchronization

70W



problems be settled at the level of each communication line, thus achieving

a globally asynchronous system. In order to describe the inter-

connections, we assume for simplicity that n, the number of modules,

is a power of two, i.e., n = 2k, and, moreover, assume that k is of the

form k = r + 2r
' the modifications resulting when k is arbitrary are

straightforward (in the latter case, r is the smallest integer for which

r + 2r > k). Each module has a k-bit address m which in turn is

expressed as a pair (1,p) of integers represented with (k-r) and r bits

respectively, such that 1*2r + p = m.

As mentioned earlier, each module has three ports: F, B, and L

(mnemonic for forward, backward, lateral), whose connection is entirely

determined by the module address (L,p), that is:

F(L,p) is connected to B(A,(p+l)mod2 r )

f B(1,p) is connected to F(L,(p-l)mod2 r )

L(I,p) is connected to L(L + c 2P,p)

where e = l-2bit (1). The interconnection scheme is displayed inp

figure 4. In words, the modules are grouped into 2k -r cycles, each

cycle consisting of 2 r modules, cyclically connected by the F-B lines.

The cycles are in turn interconnected as a (k-r)-cube; if

<XoX 1 ,..,k-r1 l
> are the dimensions of the (k-r)-cube, all edges

along dimension x, called collectively sheaf i, link modules whose

addresses are (.,i). The total number of interconnection links is

k-l 3

Each module contains an operand register T, a few memory locations,

and possesses basic arithmetic and logical capabilities. It is controlled

by a stored program or a circuit implementation of such a program.

For the time being, we make the hypothesis of unlimited parallelism,

!,
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Figure 4. The CCC interconnection scheme.

that is, the number of modules is tailored to the problem size; under

this hypothesis, the one or two memories mentioned earlier suffice.

Subsequently (section 4.3), under the hypothesis of limited

parallelism, we shall endow each module with a small private random

access memory. In either case, each module is somewhat simpler than

a current microprocessor but not basically different from it.
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4. EMULATION OF THE k-CUBE ON THE CCC

In order to implement DESCEND on the CCC, we prune the k-cube so

as to use only connections existing in the CCC. The first stage consists in

removing the sheaves corresponding to dimensions 0,1,...,r-l, and

using instead the cycle connections F and B, as introduced in section 3.

Our original DESCEND program is thus transformed to:

proc DESCEND

for j - k-l step-I until j = r

do foreach m: 0 _ m < n

pardo if bit (m) = 0 then OPER(m,J;T[m],T[m+2j])

fi

odpar

od;

foreach L: 0 A L < 2k -r pardo LOOPOPER(l) odpar

corp DESCEND.

Here procedure DLOOPOPER(1) processes the data within cycle

L to compute the desired result in 0(2 r ) parallel steps, as we

show later. Note that the running time is still O(k-r) + 0(2 r ) = O(logn).

The second transformation consists in removing, for all

j - O,...,k-r-1, the k-cube links pertaining to sheaf (r + j), except

those existing between modules whose addresses are of the form (.,J):

the resulting interconnection is then exactly the one of the CCC, as

intr~oduced in Section 3.

The computation corresponding to the for loop of the above

algorithm can no longer be performed in one parallel step. Using

repeated circular shifts within cycles, however, each operand in the

Ci: IMF-



14

cycle can be successively brought to reside for one time unit in module

(.,j), where OPER(.,j;.,.) can then be executed. Although the execution

of OPER(.,j;.,.) for all operands in a cycle now requires 2r time units,

this computation can be pipelined (overlapped) with the analogous

operations OPER(., i;.,.) for r - i < k. To achieve pipelining thus

requires a new function BSHIFT(L), which performs a cyclic backward

shift of the operands in cycle L, that is:

foreach j: 0 - j < 2r pardo T[L,2r+((j-l)mod2r), - T[.2 r+j]

odpar.

The final version of DESCEND is thus:

proc DESCEND

for i - 2r 1 step-i until i =-2
r

do foreach L: 0 S A < 2k-r

pardo foreach p:max(i,O) p < min(2 r,2 r+i)

pardo if bit (L) = 0 then OPER(a,b;U,V)
p r r

where a - L.2 +((p+i-l)mod 2r),

b = p+r,

U - T[I .2 r+p],

V = T[ (L+2p ).2 r +p.

fi

odpar;

BSHIFT(A) Comment backwards shift of cycle L;

od;

Comment end of treatment on sheaves k-l,k-2,...,r;

foreach A: 0 t- I < 2k ' r pardo LOOPOPER(L) odpar

corp DESCEND.

1

Ii

I
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The inner operation of the for loop is executed in two time units;

one for OPER, then one for BSHIFT. The total running time is thus 42
r

plus the time for executing LOOPOPER. If we can ensure that LOOPOPER

can be processed in time linear in the cycle size, the entire procedure

will be executed on the CCC in time 0(logn).

Figure 5 provides a schematic view of DESCEND on the CCC, and

conventions used are those of figure 1, which depicts DESCEND on the

k-cube. Here we assume k = 3, thus the CCC consists of 4 cycles of

length 2.

data time

0 1 2 3 4 5 6 7

I I OPER

04--w l' 2 -3' 4---p 5' 64--p 7'

SHIFT

0' 0 3' 2 51 4 ' 76

LJ 0LJi OPEN

110-- 0' 3'".2 ' 5"1- ,4' 7"4-, 6' t

SHIFT

O "1 21 3" 4' 5" 61 7" i__j I I

LOO )PER

0" 1" 2'" 3' 4" 5111 61" 71"1

Figure 5. DESCEND on the CCC, k - 3
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4.1 Computation Within the Cycles

The next question to be addressed is the implementation of

LOOPOPER(L), so that it runs in time linear in the cycle length.

Obviously, we are constrained to using only the F and B cycle links

existing in the CCC. Our objective is to emulate, on the cycle of

length 2r
, the operation OPER as it would be executed on hypothetical

r-cube sheaves. Since OPER may take place in the cycle only between

adjacent modules, particular care must be exercised to ensure that the

desired adjacencies, corresponding to all sheaves, be globally

realized in time linear in the cycle length. The key permutations for

this task are based on the perfect unshuffle [16,17]. Specifically,

UNSHUFFLE(l,i) performs the perfect-unshuffle operation on each of

the 2r-i 'l contiguous blocks of length 2 + l into which Tfi.2 r::(2+l)-2 r-1

is subdivided, and is realized as follows:

proc UNSHUFFLE(L ,i)

for b - 2 step-1 until b = 2

do foreach m: m - L.2 r + (2.s+l).2 i + p
r-i-l

where 0 - s < 2 , -b < p < b,

(p mod 2) - (b mod 2)

pardo T[m-l] - Tim] odpar

od

corp UNSHUFFLE.

Clearly, UNSHUFFLE(L,i) runs in (2 -1) parallel step. It is also easy to

realize that the program

proc BRP(L)

for i - r-l step-l until i - 1 do UNSHUFFLE(l,i) od

corp BRP

realizes the bit-reversal permutation of T(12 ::(1+l)2 -1] with reference

to the r least-significant bits of the addresses.

iJ _ ___ _ _
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We can now elucidate the general format of LOOPOPER, which consists

of a sequence of unshuffle-operation pairs, each emulating a sheaf

operation. This is preceded by BRP, so that, upon completion, the results

are in the correct order (see figure 6). In the description below

the parameter a gives the original address of the operand which is

brought to module (L,p) by the sequence: BRP; UNSHUFFLE(,0);

UNSHUFFLE(2,l);.. .;UNSHUFFLE(2,r-l-j). (Recall that denotes the

integer whose binary representation is the reversal of that of the

integer q.)

proc LOOPOPER(l)
BRP (1) ;

for j - r-l step-i until j = 0

do foreach q: 0 - q < 2 r , bit 0(q) - 0

pardo QPER(a,j;T[ .2 r+q],T[ .2 r+q+l])

where a f  .2r+- mod 2j) + (q mod 2 r-j )
2 j .

odpar;

UNSHUFFLE (1, j)

od

corp LOOPOPER.

0 1 2 3 4 5 6 7
UNSEUFFLE (. , 2)|

0 2 4 6 1 3 5 7 4, BRP(')

UNSHUFFLE (., 1)
0 4 2 6 1 5 3 7 4,

OPER
0' 4' 2' 6' 1' 5' 3' 7'

UNSHUFFLE(. ,2)
0' 2' 1' 3' 4' 6' 5' 7'

OPER
Off 21 1I" 311 4 6" 5f' 711 1

UNSHUFFLE (,)
0" 1" 211 31 4" 51" 6" 711 +

OPER
0'" I'" 2'" 31" 41" 5'"1 6111 7'1"

UNSHUFFLE (,0)
0'" 1'" 2 1" 31" 4'" 511" 61" 711

Figure 6. A schematic presentation of LOOPOPER for r - 3.
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With respect to execution time, we noted that UNSHUFFLE(',i) runs

i 2..r-l r)
in time 0(2 ); thus BRP and LOOPOPER jointly run in 0(1+2+2+...+2 l ) 0(2 r )

steps, linear in the cycle length.

4.2 Programs for each Module of the CCC

From the preceding global description of DESCEND, it is rather

straightforward to produce the sequential program of module (I,p). The

program MODULE(L,p) for a given DESCEND algorithm is of the form:

HIGHSHEAVES (L ,p) ;LOWSHEAVES (2,p), which respectively implement the

(k-r)-cube operation and LOOPOPER. The entire MODULE(A,p) is of a

very simple nature: it basically counts up time and, at each time unit

numbered t, it tests a simple logical condition involving L,p, and t;

depending on this test, either it does nothing, or it exchanges operands,

or it exchanges operands and performs an operation on them. The details

of these programs are omitted for the sake of brevity.

The precise execution time of DESCEND (or ASCEND) on the CCC is

given by the formula:

T = 4.2r - TCCC + (r+ 2 r)Toper

where TCCC is the time required for stepping up the control variable t,

testing it and performing one data exchange on some of the links; Tope r

is the time required for computing OPER(m,J;U,V) within each module.

4.3 Limited Parallelism

So far, we have assumed that the size n of the CCC was tailored to

the application. To cope with the realistic situation where the number

N of inputs is larger than the size n of the CCC, we suggest to let

Leach module of the CCC be a full fledged microprocessor endowed with a
private RAM memory.
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Assuming for simplicity that N = sn, with s = q integer, we

require that the RAM memory of each module be of size s and denote

by T[m,O::2ql the private memory locations of module m. The input

a0 ,...,aN-1 is divided into consecutive blocks of size s, each block

being stored within a module of the CCC, so that T[m,j] = a

for 0 - j < 2

The only modification concerns the program MODULE(I,p) (see

Section 4.2), which now assumes the format HIGHSHEAVES(A,p);LOWSHEAVES(g,p);

LOCAL(A,p). Programs for HIGHSHEAVES and LOW.SHEAVES are the same as before,

except that each operation and data transmission is now successively

performed on the 2 data items of each module. As for LOCAL:

proc LOCAL(L,p)

u - m2
q

for j - q-1 step-i until j = 0

do for i - 0 step 1 until i = q-I

do if bit.(i) = 0

then OPER(u+i,j;T[m,i],T[m,i+2 j ]) fi

od

od

corp LOCAL.

It should be clear by now that all of the algorithms described in

Section 1 can be applied here. A direct analysis shows that, on a CCC

N
consisting of n processors, each processor having memory- , we can

n

process N inputs in time o(N.logN) for algorithms in the classes ASCEND or

DESCEND, thus achieving the optimal speed-up possible with n processors.

I
- .~i - --- ~-------.--___ ____ __
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5. LAYOLT OF THE CCC FOR VLSI

It is interesting to examine the just described CCC within the

framework of the "VLSI model of computation" recently proposed [14,18,191.

In this model, each wire has unit width on the silicon chip and transmits

a unit of information in a unit of time; information is taken from, or

delivered to,special areas on the chip, called nexuses, each associated

with a module. Within this model, which takes realistic account of the

placement of modules and interconnection, C. D. Thompson has studied the

implementation of the Fast-Fourier-Transform [181 and has elucidated

significant relationships between input size n, chip area A, processing

time T, and the so-called minimal bisection width w.(I) Thompson has shown

that A > u2 /4 in general, and that, for the n-point FFT, T > n/2,x, thus

establishing the bound AT2  n 2/16. The lower bound for time applies to a

wider class of problems, as shown by the following proposition which we

state without proof:

Proposition: In the VLSI model (Thompson [181), time T > n is required to' 2w

merge two sorted sequences of length n/2, or to realize the data rearrange-

ment specified by some permutation drawn from a transitive group of

permutations. (2)

2
As a consequence, we have AT 2" for all such problems.16

( 1 )For a graph G - (V,E) the minimal bisection width w is defined as the
smallest integer such that w - I[(u,v) E E:u E V1 ,V E V2)j, where

[Vlpv 2 ) is a partition of V with IV 11:5 IV21-< V11 + 1.

(2)A subgroup G of the symetric group S is said to be transitive ifn
Yi,j 1 - i,j - n, A E G:a(i) - j, meaning that data located in any

position of the machine may be moved into any other position of the machine.

4- ;i -_______
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With the CCC, we have shown that oper-'tions such as FFT, merging,

cyclic shifts, shuffles, etc., are all realizable in the minimal achievable

time T = O(logn). We now demonstrate that A = O(n 2/logn 2 ) thus achieving

the lower bound exactly; this means that the CCC is optimal in the VLSI

model for FFT, merging of sorted sequences, and realization of pernmatations

drawn from a transitive group. In contrast, known layouts for the k-cube

or the perfect shuffle have area of a larger order.

To achieve A = O((n/logn) 2 ) for the CCC, consider a layout which

uses two sheaves of evenly spaced wires, horizontal and vertical, used

respectively for cube and cycle connections. Figure 7 pictorially

provides base, inductive hypothesis, and extension, to prove that an n = s'2s

module CCC can be placed on a 2 s x (2.2s-1) chip; since s - log 2 (n/log~n),

the chip size is about (n/log2 n) X (2n/log2 n-1) = O((n/logn) 2). Slightly

more complicated constructions yield somewhat more efficient module

placements as suggested by figure 8.

t [~:
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-iiii 7 7 F-*

I.-11 A

I T

F: 7

Ai

Figure 7. A standard layout for the interconnection of 4.24 modules.

O---

-- -- - -- - ---- -- -- - -- -- -

Figure 8. A more economical layout for the iterconnection of 4.2 4 modules.

f i
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For pedagogical reasons, the CCC introduced so far has a number

n = s=2 of processing modules with s a power of 2. A more general

version of the CCC can be designed, comprising n = h.2s modules. Each

of the 2s cycles of the machine has h - s modules. The lower s X 2s

modules of the cycles exhibit the horizontal interconnection of

standard CCC, while the (h-s) x 2s higher modules only have vertical

(cycle) connections, as indicated in figure 9 . Such a layout has height

2s + h-s and width 2s+ l (in unit wire width). The programs presented in

section 4 can be adapted to run on such a machine by simply ignoring

operations pertaining to non-existing horizontal (external) links, and

their running time is proportional to the cycle length h. We see that, for

any value of h satisfying log2 n--- h _ n, the area X (time)
2 product

A2  = g n n = 2 2 _ 2
AT2  (2 + h - t)h) X h X h n +nh -nh log( 0) 0(n)

meets the optimal theoretical bound, to within a constant factor. Of

particular interest is the choice h = 0(V ), which leads to a running

time T = 0($r) and uses the minimal achievable area A = 0(n).

.1 H _iz i i l ~

t i ' < i!I!I t / I

Figure 9. A standard layout for an h x 2 CCC (h 6,'-4).

LV7 ___ V ____ _
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6. CONCLUSION

En this paper, we have proposed a structure which can be used for

direct hardware implementation of specific useful algorithms, or, as

suggested in section 4.3, as a general purpose parallel processing

system.

We expect the CCC to be practically feasible in the present state of

the technology, and to be capable of executing efficiently a wide variety

of algorithms. The extent of the class of algorithms amenable to efficioat
CCC processing is not yet well understood, but it goes beyond the

applications described in Section 1; in particular, it includes a variety

of matrix and graph algorithms, as well as arithmetic and algebraic

problems.

Another salient feature of this work is the possibility which appears

to exist of developing a high level, general purpose language for parallel

programming, which would nevertheless be automatically compilable on systems

such as the CCC.
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